Exercise A.1-1
Any function belonging to O ( f k ( i ) ) O(f_k(i)) O ( f k ( i )) is upper bounded by f k ( i ) f_k(i) f k ( i ) . Using the definition of the big O notation, g k ( i ) = O ( f k ( i ) ) g_k(i)=O(f_k(i)) g k ( i ) = O ( f k ( i )) implies g k ( i ) ≤ c k f k ( i ) g_k(i) \le c_kf_k(i) g k ( i ) ≤ c k f k ( i ) for some real constant c k > 0 c_k>0 c k > 0 and all i ≥ i ^ k i \ge \hat i_k i ≥ i ^ k . Define c = m a x { c k : 1 ≤ k ≤ n } c=max\{c_k:1\le k \le n\} c = ma x { c k : 1 ≤ k ≤ n } and i 0 = m a x { i ^ k : 1 ≤ k ≤ n } i_0=max\{\hat i_k:1\le k \le n\} i 0 = ma x { i ^ k : 1 ≤ k ≤ n } . For all i ≥ i 0 i\ge i_0 i ≥ i 0 (assuming n ≥ 0 ) n \ge 0) n ≥ 0 )
∑ k = 1 n O ( f k ( i ) ) ≤ ∑ k = 1 n c k f k ( i ) ≤ ∑ k = 1 n c f k ( i ) = c ∑ k = 1 n f k ( i ) ∴ ∑ k = 1 n O ( f k ( i ) ) = O ( ∑ k = 1 n f k ( i ) ) \begin{align*}
\sum_{k=1}^n O(f_k(i)) &\le \sum_{k=1}^n c_kf_k(i) \\
&\le \sum_{k=1}^n cf_k(i) \\
&= c\sum_{k=1}^n f_k(i) \\
&\therefore \sum_{k=1}^n O(f_k(i))=O(\sum_{k=1}^n f_k(i))
\end{align*} k = 1 ∑ n O ( f k ( i )) ≤ k = 1 ∑ n c k f k ( i ) ≤ k = 1 ∑ n c f k ( i ) = c k = 1 ∑ n f k ( i ) ∴ k = 1 ∑ n O ( f k ( i )) = O ( k = 1 ∑ n f k ( i )) The asymptotic variable on both sides is i i i whilst n n n is essentially fixed. Regardless how we substitute those n n n functions on the left, their sum is asymptotically bounded from above by a corresponding sum of upper bounds as i → ∞ i \to \infty i → ∞ .
This equation is frequently employed in analysis of algorithms. Suppose our algorithm consists of n = 3 n=3 n = 3 sections whose running times are O ( i lg i ) O(i\lg i) O ( i lg i ) , O ( i 2 ) O(i^2) O ( i 2 ) and O ( i ) O(i) O ( i ) . The total time is commensurate with their sum, which by our equation is O ( i lg i + i 2 + i ) = O ( i 2 ) O(i\lg i+i^2+i)=O(i^2) O ( i lg i + i 2 + i ) = O ( i 2 ) , so our algorithm is quadratic in i i i .
Exercise A.1-2
∑ k = 1 n ( 2 k − 1 ) = 2 ∑ k = 1 n k − ∑ k = 1 n 1 (by the linearity property) = 2 n ( n + 1 ) 2 − n (by equation (A.1)) = n 2 \begin{align*}
\sum_{k=1}^n(2k-1)&= 2\sum_{k=1}^n k - \sum_{k=1}^n 1 && \text{(by the linearity property)} \\
&=\frac{2n(n+1)}{2}-n && \text{(by equation (A.1))} \\
&= n^2
\end{align*} k = 1 ∑ n ( 2 k − 1 ) = 2 k = 1 ∑ n k − k = 1 ∑ n 1 = 2 2 n ( n + 1 ) − n = n 2 (by the linearity property) (by equation (A.1)) Exercise A.1-3
111 , 111 , 111 = ∑ k = 0 8 1 0 k = 1 0 9 − 1 10 − 1 = 999 , 999 , 999 9 111,111,111= \sum_{k=0}^8 10^k=\frac{10^9-1}{10-1}=\frac{999,999,999}{9} 111 , 111 , 111 = k = 0 ∑ 8 1 0 k = 10 − 1 1 0 9 − 1 = 9 999 , 999 , 999 Exercise A.1-4
Notice that our infinite series is absolutely convergent, since it transforms into a decreasing geometric series with x = 1 2 x=\frac {1}{2} x = 2 1 , if we use absolute values of summands. Consequently, we can rearrange the terms. Denote the original sum as S, thus
2 S = 2 − ( 1 − 1 2 + 1 4 − . . . ) = 2 − S ∴ 3 S = 2 ⟹ S = 2 3 \begin{align*}
2S &= 2-(1-\frac {1}{2}+\frac {1}{4}-...)=2-S \\
&\therefore 3S=2 \implies S=\frac {2}{3}
\end{align*} 2 S = 2 − ( 1 − 2 1 + 4 1 − ... ) = 2 − S ∴ 3 S = 2 ⟹ S = 3 2 Another possibility is to substitute x = − 1 2 x=-\frac{1}{2} x = − 2 1 in equation (A.7).
Exercise A.1-5
We will find the two bounds (lower and upper) separately. The upper bound is
∑ k = 1 n k c ≤ ∑ k = 1 n n c = n c ∑ k = 1 n 1 = n c + 1 ∴ ∑ k = 1 n k c = O ( n c + 1 ) ✓ \begin{align*}
\sum_{k=1}^n k^c &\le \sum_{k=1}^n n^c=n^c\sum_{k=1}^n 1=n^{c+1} \\
&\therefore \sum_{k=1}^n k^c=O(n^{c+1}) \qquad \checkmark
\end{align*} k = 1 ∑ n k c ≤ k = 1 ∑ n n c = n c k = 1 ∑ n 1 = n c + 1 ∴ k = 1 ∑ n k c = O ( n c + 1 ) ✓ The lower bound demands more work, as we drop half of the terms and try to bound a partial sum.
∑ k = 1 n k c ≥ ∑ k = ⌈ n / 2 ⌉ n k c ≥ ∑ k = ⌈ n / 2 ⌉ n ⌈ n / 2 ⌉ c = ( n − ⌈ n / 2 ⌉ + 1 ) ⌈ n / 2 ⌉ c = ( ⌊ n / 2 ⌋ + 1 ) ⌈ n / 2 ⌉ c ≥ ⌈ n / 2 ⌉ c + 1 ≥ ( n / 2 ) c + 1 = ( 1 2 ) c + 1 n c + 1 ∴ ∑ k = 1 n k c = Ω ( n c + 1 ) ✓ \begin{align*}
\sum_{k=1}^n k^c&\ge \sum_{k=\lceil{n/2}\rceil}^n k^c \\
&\ge\sum_{k=\lceil{n/2}\rceil}^n \lceil{n/2}\rceil^c \\
&= (n-\lceil{n/2}\rceil+1)\lceil{n/2}\rceil^c \\
&=(\lfloor{n/2}\rfloor+1)\lceil{n/2}\rceil^c \\
&\ge \lceil{n/2}\rceil^{c+1} \\
&\ge {(n/2)}^{c+1} \\
&={\left(\frac{1}{2}\right)}^{c+1}n^{c+1} \\
&\therefore \sum_{k=1}^n k^c=\Omega(n^{c+1})\qquad \checkmark
\end{align*} k = 1 ∑ n k c ≥ k = ⌈ n /2 ⌉ ∑ n k c ≥ k = ⌈ n /2 ⌉ ∑ n ⌈ n /2 ⌉ c = ( n − ⌈ n /2 ⌉ + 1 ) ⌈ n /2 ⌉ c = (⌊ n /2 ⌋ + 1 ) ⌈ n /2 ⌉ c ≥ ⌈ n /2 ⌉ c + 1 ≥ ( n /2 ) c + 1 = ( 2 1 ) c + 1 n c + 1 ∴ k = 1 ∑ n k c = Ω ( n c + 1 ) ✓ Theorem 3.1 implies that ∑ k = 1 n k c = Θ ( n c + 1 ) \sum_{k=1}^n k^c=\Theta(n^{c+1}) ∑ k = 1 n k c = Θ ( n c + 1 ) .
Exercise A.1-6
Differentiating both sides of the infinite geometric series (A.11) gives
∑ k = 1 n k 2 x k − 1 = ( 1 − x ) 2 + 2 x ( 1 − x ) ( 1 − x ) 4 = ( 1 − x ) + 2 x ( 1 − x ) 3 = 1 + x ( 1 − x ) 3 ∴ ∑ k = 1 n k 2 x k = x ( 1 + x ) ( 1 − x ) 3 (after multiplying both sides with x ) \begin{align*}
\sum_{k=1}^n k^2x^{k-1}&=\frac{(1-x)^2+2x(1-x)}{(1-x)^4}\\
&=\frac{(1-x)+2x}{(1-x)^3}\\
&=\frac {1+x}{(1-x)^3} \\
&\therefore \sum_{k=1}^n k^2x^k = \frac {x(1+x)}{(1-x)^3} && \text{(after multiplying both sides with } x \text{)}
\end{align*} k = 1 ∑ n k 2 x k − 1 = ( 1 − x ) 4 ( 1 − x ) 2 + 2 x ( 1 − x ) = ( 1 − x ) 3 ( 1 − x ) + 2 x = ( 1 − x ) 3 1 + x ∴ k = 1 ∑ n k 2 x k = ( 1 − x ) 3 x ( 1 + x ) (after multiplying both sides with x ) Exercise A.1-7
The upper bound is
∑ k = 1 n k lg k ≤ ∑ k = 1 n n lg n = n n lg n = n 3 / 2 lg 1 / 2 n ∴ ∑ k = 1 n k lg k = O ( n 3 / 2 lg 1 / 2 n ) ✓ \begin{align*}
\sum_{k=1}^n \sqrt {k\lg k} &\le \sum_{k=1}^n \sqrt {n\lg n} =n\sqrt {n\lg n}= n^{3/2} {\lg^{1/2} n} \\
&\therefore \sum_{k=1}^n \sqrt {k\lg k}=O(n^{3/2} {\lg^{1/2} n}) \qquad \checkmark
\end{align*} k = 1 ∑ n k lg k ≤ k = 1 ∑ n n lg n = n n lg n = n 3/2 lg 1/2 n ∴ k = 1 ∑ n k lg k = O ( n 3/2 lg 1/2 n ) ✓ The lower bound can be attained by splitting the summation as in Exercise A.1-5 assuming n ≥ 4 n \ge 4 n ≥ 4 , so that lg n − 1 ≥ ( lg n ) / 2 \lg n - 1 \ge (\lg n)/2 lg n − 1 ≥ ( lg n ) /2 .
∑ k = 1 n k lg k ≥ ∑ k = ⌈ n / 2 ⌉ n k lg k ≥ ∑ k = ⌈ n / 2 ⌉ n ⌈ n / 2 ⌉ lg ⌈ n / 2 ⌉ = ( n − ⌈ n / 2 ⌉ + 1 ) ⌈ n / 2 ⌉ lg ⌈ n / 2 ⌉ = ( ⌊ n / 2 ⌋ + 1 ) ⌈ n / 2 ⌉ lg ⌈ n / 2 ⌉ ≥ ⌈ n / 2 ⌉ ⌈ n / 2 ⌉ lg ⌈ n / 2 ⌉ ≥ ( n / 2 ) ( n / 2 ) lg ( n / 2 ) = ( n / 2 ) ( n / 2 ) ( lg n − 1 ) ≥ ( n / 2 ) ( n / 2 ) ( lg n ) / 2 = ( 1 4 ) n 3 / 2 lg 1 / 2 n ∴ ∑ k = 1 n k lg k = Ω ( n 3 / 2 lg 1 / 2 n ) ✓ \begin{align*}
\sum_{k=1}^n \sqrt {k\lg k} &\ge \sum_{k=\lceil{n/2}\rceil}^n \sqrt {k\lg k} \\
&\ge \sum_{k=\lceil{n/2}\rceil}^n \sqrt {\lceil{n/2}\rceil \lg \lceil{n/2}\rceil} \\
&= (n-\lceil{n/2}\rceil+1) \sqrt {\lceil{n/2}\rceil \lg \lceil{n/2}\rceil} \\
&=(\lfloor{n/2}\rfloor+1) \sqrt {\lceil{n/2}\rceil \lg \lceil{n/2}\rceil} \\
&\ge \lceil{n/2}\rceil \sqrt {\lceil{n/2}\rceil \lg \lceil{n/2}\rceil} \\
&\ge (n/2) \sqrt {(n/2) \lg (n/2)} \\
&= (n/2) \sqrt {(n/2) (\lg n - 1)} \\
&\ge (n/2) \sqrt {(n/2) (\lg n)/2} \\
&=\left(\frac{1}{4}\right) n^{3/2} {\lg^{1/2} n} \\
&\therefore \sum_{k=1}^n \sqrt {k\lg k}=\Omega(n^{3/2} {\lg^{1/2} n})\qquad \checkmark
\end{align*} k = 1 ∑ n k lg k ≥ k = ⌈ n /2 ⌉ ∑ n k lg k ≥ k = ⌈ n /2 ⌉ ∑ n ⌈ n /2 ⌉ lg ⌈ n /2 ⌉ = ( n − ⌈ n /2 ⌉ + 1 ) ⌈ n /2 ⌉ lg ⌈ n /2 ⌉ = (⌊ n /2 ⌋ + 1 ) ⌈ n /2 ⌉ lg ⌈ n /2 ⌉ ≥ ⌈ n /2 ⌉ ⌈ n /2 ⌉ lg ⌈ n /2 ⌉ ≥ ( n /2 ) ( n /2 ) lg ( n /2 ) = ( n /2 ) ( n /2 ) ( lg n − 1 ) ≥ ( n /2 ) ( n /2 ) ( lg n ) /2 = ( 4 1 ) n 3/2 lg 1/2 n ∴ k = 1 ∑ n k lg k = Ω ( n 3/2 lg 1/2 n ) ✓ Theorem 3.1 implies that ∑ k = 1 n k lg k = Θ ( n 3 / 2 lg 1 / 2 n ) \sum_{k=1}^n \sqrt {k\lg k}=\Theta(n^{3/2} {\lg^{1/2} n}) ∑ k = 1 n k lg k = Θ ( n 3/2 lg 1/2 n ) .
Exercise A.1-8
Equations (A.8) and (A.9) are our starting points.
∑ k = 1 n 1 2 k − 1 + ∑ k = 1 n 1 2 k = ∑ k = 1 2 n 1 k = H 2 n = ln 2 n + O ( 1 ) = ln n + 1 + O ( 1 ) ✓ \sum_{k=1}^n \frac {1}{2k-1}+\sum_{k=1}^n \frac {1}{2k}=\sum_{k=1}^{2n} \frac {1}{k}=H_{2n}=\ln 2n + O(1)=\ln n +1+O(1) \qquad \checkmark k = 1 ∑ n 2 k − 1 1 + k = 1 ∑ n 2 k 1 = k = 1 ∑ 2 n k 1 = H 2 n = ln 2 n + O ( 1 ) = ln n + 1 + O ( 1 ) ✓ We will keep all constants and bundle them under single O(1) only in the last step for better visibility. Observe that a O ( 1 ) + b O ( 1 ) + c = O ( 1 ) aO(1)+bO(1)+c=O(1) a O ( 1 ) + b O ( 1 ) + c = O ( 1 ) for all real constants a a a , b b b and c c c . Let us multiply the leftmost and rightmost expressions by 2.
2 ∑ k = 1 n 1 2 k − 1 + ∑ k = 1 n 1 k = 2 ln n + 2 + 2 O ( 1 ) 2 ∑ k = 1 n 1 2 k − 1 + H n = 2 ln n + 2 + 2 O ( 1 ) 2 ∑ k = 1 n 1 2 k − 1 + ln n + O ( 1 ) = 2 ln n + 2 + 2 O ( 1 ) 2 ∑ k = 1 n 1 2 k − 1 = ln n + 2 + 2 O ( 1 ) − O ( 1 ) ∑ k = 1 n 1 2 k − 1 = ln n + O ( 1 ) \begin{align*}
2\sum_{k=1}^n \frac {1}{2k-1}+\sum_{k=1}^n \frac {1}{k}&=2\ln n +2+2O(1) \\
2\sum_{k=1}^n \frac {1}{2k-1}+H_n &=2\ln n +2+2O(1) \\
2\sum_{k=1}^n \frac {1}{2k-1}+\ln n + O(1) &=2\ln n +2+2O(1) \\
2\sum_{k=1}^n \frac {1}{2k-1} &=\ln n +2+2O(1)-O(1) \\
\sum_{k=1}^n \frac {1}{2k-1} &=\ln {\sqrt{n}} +O(1)
\end{align*} 2 k = 1 ∑ n 2 k − 1 1 + k = 1 ∑ n k 1 2 k = 1 ∑ n 2 k − 1 1 + H n 2 k = 1 ∑ n 2 k − 1 1 + ln n + O ( 1 ) 2 k = 1 ∑ n 2 k − 1 1 k = 1 ∑ n 2 k − 1 1 = 2 ln n + 2 + 2 O ( 1 ) = 2 ln n + 2 + 2 O ( 1 ) = 2 ln n + 2 + 2 O ( 1 ) = ln n + 2 + 2 O ( 1 ) − O ( 1 ) = ln n + O ( 1 ) Exercise A.1-9
We have an infinite sum similar to the one in (A.11) with x = 1 / 2 x=1/2 x = 1/2 . The linearity property also applies to infinite convergent series, but we must prove that our series converges. We can easily accomplish this by using the direct comparison test . The infinite sum in (A.11) converges for the given x x x , thus we can use it as a reference. For all k > 0 k>0 k > 0 it is indeed true that 0 ≤ k − 1 2 k < k 2 k 0 \le \frac {k-1}{2^k} < \frac {k}{2^k} 0 ≤ 2 k k − 1 < 2 k k , so our series converges.
First we will use the linearity property of summations and afterward apply (A.11) and (A.7).
∑ k = 0 ∞ k − 1 2 k = ∑ k = 0 ∞ k 2 k − ∑ k = 0 ∞ 1 2 k = 1 / 2 ( 1 − 1 / 2 ) 2 − 1 1 − 1 / 2 = 0 \sum_{k=0}^{\infin} \frac {k-1}{2^k}=\sum_{k=0}^{\infin} \frac {k}{2^k}-\sum_{k=0}^{\infin} \frac {1}{2^k}=\frac{1/2}{(1-1/2)^2}-\frac{1}{1-1/2}=0 k = 0 ∑ ∞ 2 k k − 1 = k = 0 ∑ ∞ 2 k k − k = 0 ∑ ∞ 2 k 1 = ( 1 − 1/2 ) 2 1/2 − 1 − 1/2 1 = 0 Exercise A.1-10
If x = 0 x=0 x = 0 , then the result is zero, so assume that x ≠ 0 x \neq 0 x = 0 . Let y = x 2 y=x^2 y = x 2 , since ∣ x ∣ < 1 ⟹ y < 1 |x|<1 \implies y<1 ∣ x ∣ < 1 ⟹ y < 1 .
The story is similar to Exercise A.1-9 , although we cannot use the same convergence test. The limit comparison test turns out to be appropriate. We will again use the sum in (A.11) as a reference (using y instead of x), since we know it converges. All terms in both sums are positive (recall that k ≥ 1 k\ge1 k ≥ 1 ), so we can calculate the limit.
lim k → ∞ ( 2 k + 1 ) y k k y k = lim k → ∞ 2 k + 1 k = 2 ✓ \lim_{k \to \infin} \frac {(2k+1)y^k}{ ky^k}=\lim_{k \to \infin} \frac {2k+1}{k}=2 \qquad \checkmark k → ∞ lim k y k ( 2 k + 1 ) y k = k → ∞ lim k 2 k + 1 = 2 ✓ According to the test our sum converges. We can now proceed exactly as in the previous exercise.
∑ k = 1 ∞ ( 2 k + 1 ) y k = 2 ∑ k = 1 ∞ k y k + ∑ k = 0 ∞ y k − 1 = 2 y ( 1 − y ) 2 + 1 1 − y − 1 = y ( 3 − y ) ( 1 − y ) 2 ✓ \begin{align*}
\sum_{k=1}^\infty (2k+1)y^k&=2\sum_{k=1}^\infty ky^k +\sum_{k=0}^\infty y^k-1 \\
&=\frac {2y}{(1-y)^2}+\frac {1}{1-y}-1 \\
&=\frac {y(3-y)}{(1-y)^2}\qquad \checkmark
\end{align*} k = 1 ∑ ∞ ( 2 k + 1 ) y k = 2 k = 1 ∑ ∞ k y k + k = 0 ∑ ∞ y k − 1 = ( 1 − y ) 2 2 y + 1 − y 1 − 1 = ( 1 − y ) 2 y ( 3 − y ) ✓ We have tweaked the starting index for k k k in the expansion, hence that extra -1. After reversing the initial substitution we get
∑ k = 1 ∞ ( 2 k + 1 ) x 2 k = x 2 ( 3 − x 2 ) ( 1 − x 2 ) 2 \sum_{k=1}^\infty (2k+1)x^{2k}=\frac {x^2(3-x^2)}{(1-x^2)^2} k = 1 ∑ ∞ ( 2 k + 1 ) x 2 k = ( 1 − x 2 ) 2 x 2 ( 3 − x 2 ) Exercise A.1-11
P = ∏ k = 2 n ( 1 − 1 k 2 ) = ∏ k = 2 n k 2 − 1 k 2 = ∏ k = 2 n ( k − 1 ) ( k + 1 ) k 2 ✓ P=\prod_{k=2}^n (1-\frac {1}{k^2})=\prod_{k=2}^n \frac {k^2-1}{k^2}=\prod_{k=2}^n \frac {(k-1)(k+1)}{k^2} \qquad \checkmark P = k = 2 ∏ n ( 1 − k 2 1 ) = k = 2 ∏ n k 2 k 2 − 1 = k = 2 ∏ n k 2 ( k − 1 ) ( k + 1 ) ✓ Observe that all terms of the product are positive. Therefore, we can convert a formula with a product to a formula with a summation by using the identity from the book.
lg P = ∑ k = 2 n ( lg ( k − 1 ) + lg ( k + 1 ) − 2 lg k ) = ∑ k = 2 n ( lg ( k − 1 ) − lg k ) ⏟ telescopes + ∑ k = 2 n ( lg ( k + 1 ) − lg k ) ⏟ telescopes = lg 1 − lg n − lg 2 + lg ( n + 1 ) = lg n + 1 2 n ✓ ∴ ∏ k = 2 n ( 1 − 1 k 2 ) = n + 1 2 n \begin{align*}
\lg P&=\sum_{k=2}^n(\lg (k-1)+\lg(k+1)-2\lg k) \\
&=\underbrace{\sum_{k=2}^n(\lg(k-1)-\lg k)}_{\text{telescopes}}+\underbrace{\sum_{k=2}^n(\lg(k+1)-\lg k)}_{\text{telescopes}} \\
&=\lg 1-\lg n-\lg2+\lg(n+1) \\
&=\lg \frac {n+1}{2n} \qquad \checkmark\\
&\therefore \prod_{k=2}^n (1-\frac {1}{k^2})=\frac {n+1}{2n}
\end{align*} lg P = k = 2 ∑ n ( lg ( k − 1 ) + lg ( k + 1 ) − 2 lg k ) = telescopes k = 2 ∑ n ( lg ( k − 1 ) − lg k ) + telescopes k = 2 ∑ n ( lg ( k + 1 ) − lg k ) = lg 1 − lg n − lg 2 + lg ( n + 1 ) = lg 2 n n + 1 ✓ ∴ k = 2 ∏ n ( 1 − k 2 1 ) = 2 n n + 1 Exercise A.2-1
f ( k ) = 1 k 2 f(k) =\frac{1}{k^2} f ( k ) = k 2 1 is a monotonically decreasing function, so we can use integral approximation (A.19) to bound the summation.
∑ k = 1 n 1 k 2 = 1 + ∑ k = 2 n 1 k 2 ≤ 1 + ∫ 1 n d x x 2 = 1 − 1 x ∣ 1 n = 2 − 1 n < 2 \sum_{k=1}^n \frac{1}{k^2}=1+\sum_{k=2}^n \frac{1}{k^2}\le 1+\int_1^n \frac{dx}{x^2}=1-\frac{1}{x}\bigg\rvert_1^n=2-\frac{1}{n}<2 k = 1 ∑ n k 2 1 = 1 + k = 2 ∑ n k 2 1 ≤ 1 + ∫ 1 n x 2 d x = 1 − x 1 1 n = 2 − n 1 < 2 Exercise A.2-2
∑ k = 0 ⌊ lg n ⌋ ⌈ n 2 k ⌉ < ∑ k = 0 ⌊ lg n ⌋ ( n 2 k + 1 ) (by inequality (3.2)) ≤ ∑ k = 0 ⌊ lg n ⌋ n 2 k + lg n + 1 (by linearity property) < ∑ k = 0 ∞ n 2 k + lg n + 1 = n 1 − 1 / 2 + lg n + 1 (by equation (A.7)) = 2 n + lg n + 1 ≤ 3 n (for all n ≥ 2 ) ∴ ∑ k = 0 ⌊ lg n ⌋ ⌈ n 2 k ⌉ = O ( n ) \begin{align*}
\sum_{k=0}^{\lfloor\lg n\rfloor}\left\lceil\frac{n}{2^k}\right\rceil &< \sum_{k=0}^{\lfloor\lg n\rfloor}\left(\frac{n}{2^k}+1\right) && \text{(by inequality (3.2))} \\
&\le \sum_{k=0}^{\lfloor\lg n\rfloor}\frac{n}{2^k} +\lg n+1 && \text{(by linearity property)}\\
&< \sum_{k=0}^\infty\frac{n}{2^k} +\lg n+1\\
&= \frac{n}{1-1/2}+\lg n+1 && \text{(by equation (A.7))} \\
&= 2n+\lg n+1 \\
&\le 3n && \text{(for all } n \ge 2 \text{) } \\
&\therefore \sum_{k=0}^{\lfloor\lg n\rfloor}\left\lceil\frac{n}{2^k}\right\rceil=O(n)
\end{align*} k = 0 ∑ ⌊ l g n ⌋ ⌈ 2 k n ⌉ < k = 0 ∑ ⌊ l g n ⌋ ( 2 k n + 1 ) ≤ k = 0 ∑ ⌊ l g n ⌋ 2 k n + lg n + 1 < k = 0 ∑ ∞ 2 k n + lg n + 1 = 1 − 1/2 n + lg n + 1 = 2 n + lg n + 1 ≤ 3 n ∴ k = 0 ∑ ⌊ l g n ⌋ ⌈ 2 k n ⌉ = O ( n ) (by inequality (3.2)) (by linearity property) (by equation (A.7)) (for all n ≥ 2 ) Exercise A.2-3
The idea is to split the range 1 to n into ⌊ lg n ⌋ \lfloor\lg n\rfloor ⌊ lg n ⌋ pieces and lower-bound the contribution of each piece by 1/2. The pieces are the same as in the case of calculating the upper bound. The only difference is that the representative (pivot) of each piece is 1 / 2 i + 1 1/2^{i+1} 1/ 2 i + 1 instead of 1 / 2 i 1/2^i 1/ 2 i for i = 0 , 1 , . . . , ⌊ lg n ⌋ − 1 i=0,1,...,\lfloor\lg n\rfloor-1 i = 0 , 1 , ... , ⌊ lg n ⌋ − 1 . Furthermore, some pieces may be missing in the last segment (for i = ⌊ lg n ⌋ i=\lfloor\lg n\rfloor i = ⌊ lg n ⌋ ), but this is OK for getting the lower bound.
∑ k = 1 n 1 k ≥ ∑ i = 0 ⌊ lg n ⌋ − 1 ∑ j = 0 2 i − 1 1 2 i + j ≥ ∑ i = 0 ⌊ lg n ⌋ − 1 ∑ j = 0 2 i − 1 1 2 i + 1 = ∑ i = 0 ⌊ lg n ⌋ − 1 ( 1 / 2 ) = ⌊ lg n ⌋ / 2 > ( lg n − 1 ) / 2 ∴ ∑ k = 1 n 1 k = Ω ( lg n ) \begin{align*}
\sum_{k=1}^n\frac{1}{k} &\ge \sum_{i=0}^{\lfloor\lg n\rfloor-1}\sum_{j=0}^{2^i-1}\frac{1}{2^i+j} \\
&\ge \sum_{i=0}^{\lfloor\lg n\rfloor-1}\sum_{j=0}^{2^i-1}\frac{1}{2^{i+1}} \\
&= \sum_{i=0}^{\lfloor\lg n\rfloor-1}(1/2) \\
&= \lfloor\lg n\rfloor/2 \\
&> (\lg n - 1)/2 \\
&\therefore \sum_{k=1}^n\frac{1}{k} = \Omega(\lg n)
\end{align*} k = 1 ∑ n k 1 ≥ i = 0 ∑ ⌊ l g n ⌋ − 1 j = 0 ∑ 2 i − 1 2 i + j 1 ≥ i = 0 ∑ ⌊ l g n ⌋ − 1 j = 0 ∑ 2 i − 1 2 i + 1 1 = i = 0 ∑ ⌊ l g n ⌋ − 1 ( 1/2 ) = ⌊ lg n ⌋ /2 > ( lg n − 1 ) /2 ∴ k = 1 ∑ n k 1 = Ω ( lg n ) Exercise A.2-4
f ( k ) = k 3 f(k)=k^3 f ( k ) = k 3 is monotonically increasing, so we can use integral approximation (A.18) to bound the summation.
∫ 0 n x 3 d x = n 4 4 ≤ ∑ k = 1 n k 3 ≤ ∫ 1 n + 1 x 3 d x = ( n + 1 ) 4 − 1 4 ∴ ∑ k = 1 n k 3 = Θ ( n 4 ) \begin{align*}
\int_0^nx^3\,dx = \frac{n^4}{4}&\le \sum_{k=1}^nk^3 \le \int_1^{n+1}x^3\,dx =\frac{(n+1)^4-1}{4} \\ &\therefore \sum_{k=1}^nk^3=\Theta(n^4)
\end{align*} ∫ 0 n x 3 d x = 4 n 4 ≤ k = 1 ∑ n k 3 ≤ ∫ 1 n + 1 x 3 d x = 4 ( n + 1 ) 4 − 1 ∴ k = 1 ∑ n k 3 = Θ ( n 4 ) Exercise A.2-5
We would have an improper integral , since f(k) is undefined for k = 0 k=0 k = 0 .
Problem A-1
a.
∑ k = 1 n k r = Θ ( n r + 1 ) (see Exercise A.1-5) \begin{align*}
\sum_{k=1}^n k^r = \Theta(n^{r+1}) && \text{(see Exercise A.1-5)}
\end{align*} k = 1 ∑ n k r = Θ ( n r + 1 ) (see Exercise A.1-5) b.
The upper bound is
∑ k = 1 n lg s k ≤ ∑ k = 1 n lg s n = n lg s n ∴ ∑ k = 1 n lg s k = O ( n lg s n ) ✓ \sum_{k=1}^n\lg^sk \le \sum_{k=1}^n\lg^sn = n\lg^sn
\therefore \sum_{k=1}^n\lg^sk=O(n\lg^sn) \qquad \checkmark k = 1 ∑ n lg s k ≤ k = 1 ∑ n lg s n = n lg s n ∴ k = 1 ∑ n lg s k = O ( n lg s n ) ✓ The lower bound is
∑ k = 1 n lg s k ≥ ∑ k = ⌈ n / 2 ⌉ n lg s k ≥ ∑ k = ⌈ n / 2 ⌉ n lg s ( ⌈ n / 2 ⌉ ) = ( n − ⌈ n / 2 ⌉ + 1 ) lg s ( ⌈ n / 2 ⌉ ) = ( ⌊ n / 2 ⌋ + 1 ) lg s ( ⌈ n / 2 ⌉ ) ≥ ⌈ n / 2 ⌉ lg s ( ⌈ n / 2 ⌉ ) ≥ ( n / 2 ) lg s ( n / 2 ) = ( n / 2 ) lg s n − n / 2 ∴ ∑ k = 1 n lg s k = Ω ( n lg s n ) ✓ \begin{align*}
\sum_{k=1}^n\lg^sk &\ge \sum_{k=\lceil{n/2}\rceil}^n\lg^sk \\
&\ge \sum_{k=\lceil{n/2}\rceil}^n\lg^s(\lceil{n/2}\rceil) \\
&= (n-\lceil{n/2}\rceil+1)\lg^s(\lceil{n/2}\rceil) \\
&= (\lfloor{n/2}\rfloor+1)\lg^s(\lceil{n/2}\rceil) \\
&\ge \lceil{n/2}\rceil\lg^s(\lceil{n/2}\rceil) \\
&\ge (n/2)\lg^s(n/2) \\
&= (n/2)\lg^s n-n/2 \\
&\therefore \sum_{k=1}^n\lg^sk=\Omega(n\lg^sn) \qquad \checkmark
\end{align*} k = 1 ∑ n lg s k ≥ k = ⌈ n /2 ⌉ ∑ n lg s k ≥ k = ⌈ n /2 ⌉ ∑ n lg s (⌈ n /2 ⌉) = ( n − ⌈ n /2 ⌉ + 1 ) lg s (⌈ n /2 ⌉) = (⌊ n /2 ⌋ + 1 ) lg s (⌈ n /2 ⌉) ≥ ⌈ n /2 ⌉ lg s (⌈ n /2 ⌉) ≥ ( n /2 ) lg s ( n /2 ) = ( n /2 ) lg s n − n /2 ∴ k = 1 ∑ n lg s k = Ω ( n lg s n ) ✓ Theorem 3.1 implies that ∑ k = 1 n lg s k = Θ ( n lg s n ) \sum_{k=1}^n\lg^sk=\Theta(n\lg^sn) ∑ k = 1 n lg s k = Θ ( n lg s n ) .
c.
The upper bound is
∑ k = 1 n k r lg s k ≤ ∑ k = 1 n n r lg s n = n r + 1 lg s n ∴ ∑ k = 1 n k r lg s k = O ( n r + 1 lg s n ) ✓ \sum_{k=1}^n k^r\lg^s k \le \sum_{k=1}^n n^r\lg^sn = n^{r+1}\lg^sn
\therefore \sum_{k=1}^n k^r\lg^sk=O(n^{r+1}\lg^sn)\qquad \checkmark k = 1 ∑ n k r lg s k ≤ k = 1 ∑ n n r lg s n = n r + 1 lg s n ∴ k = 1 ∑ n k r lg s k = O ( n r + 1 lg s n ) ✓ The lower bound is
∑ k = 1 n k r lg s k ≥ ∑ k = ⌈ n / 2 ⌉ n k r lg s k ≥ ∑ k = ⌈ n / 2 ⌉ n ⌈ n / 2 ⌉ r lg s ( ⌈ n / 2 ⌉ ) = ( n − ⌈ n / 2 ⌉ + 1 ) ⌈ n / 2 ⌉ r lg s ( ⌈ n / 2 ⌉ ) = ( ⌊ n / 2 ⌋ + 1 ) ⌈ n / 2 ⌉ r lg s ( ⌈ n / 2 ⌉ ) ≥ ⌈ n / 2 ⌉ r + 1 lg s ( ⌈ n / 2 ⌉ ) ≥ ( n / 2 ) r + 1 lg s ( n / 2 ) = ( n / 2 ) r + 1 lg s n − ( n / 2 ) r + 1 ∴ ∑ k = 1 n k r lg s k = Ω ( n r + 1 lg s n ) ✓ \begin{align*}
\sum_{k=1}^n k^r\lg^sk &\ge \sum_{k=\lceil{n/2}\rceil}^n k^r\lg^sk \\
&\ge \sum_{k=\lceil{n/2}\rceil}^n {\lceil{n/2}\rceil}^r\lg^s(\lceil{n/2}\rceil) \\
&= (n-\lceil{n/2}\rceil+1) {\lceil{n/2}\rceil}^r\lg^s(\lceil{n/2}\rceil) \\
&= (\lfloor{n/2}\rfloor+1) {\lceil{n/2}\rceil}^r\lg^s(\lceil{n/2}\rceil) \\
&\ge {\lceil{n/2}\rceil}^{r+1}\lg^s(\lceil{n/2}\rceil) \\
&\ge (n/2)^{r+1}\lg^s(n/2) \\
&= (n/2)^{r+1}\lg^s n-(n/2)^{r+1} \\
&\therefore \sum_{k=1}^n k^r\lg^sk=\Omega(n^{r+1}\lg^sn)\qquad \checkmark
\end{align*} k = 1 ∑ n k r lg s k ≥ k = ⌈ n /2 ⌉ ∑ n k r lg s k ≥ k = ⌈ n /2 ⌉ ∑ n ⌈ n /2 ⌉ r lg s (⌈ n /2 ⌉) = ( n − ⌈ n /2 ⌉ + 1 ) ⌈ n /2 ⌉ r lg s (⌈ n /2 ⌉) = (⌊ n /2 ⌋ + 1 ) ⌈ n /2 ⌉ r lg s (⌈ n /2 ⌉) ≥ ⌈ n /2 ⌉ r + 1 lg s (⌈ n /2 ⌉) ≥ ( n /2 ) r + 1 lg s ( n /2 ) = ( n /2 ) r + 1 lg s n − ( n /2 ) r + 1 ∴ k = 1 ∑ n k r lg s k = Ω ( n r + 1 lg s n ) ✓ Theorem 3.1 implies that ∑ k = 1 n k r lg s k = Θ ( n r + 1 lg s n ) \sum_{k=1}^n k^r\lg^sk=\Theta(n^{r+1}\lg^sn) ∑ k = 1 n k r lg s k = Θ ( n r + 1 lg s n ) .